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Abstract

A BIB design with b blocks is said to have the support
size b* when exactly b* of the b blocks are distinct.
BIB designs with b < b have interesting applications in
design of experiments and finite population sampling as ex-
plained in detail in Foody and Hedayat (1977). A method
called "trade off" is introduced for the construction of
BIB designs. We apply this method and some techniques in
combinatorial topology to study BIB designs with arbitrary
v and k = 3 in general and with v =7 and k=3 in
particular. We determine the existence or nonexistence of
BIB designs with any given b and b* except the case when
b = 16 for the family of BIB designs with v = 7 and
k = 3,




3 Motivation. Suppose an experimenter wants to test and

evaluate v = 7 treatments based on b blocks each of size
k = 3. According to the usual homoscedastic linear additive
model for measurements, the best possible design under any

reasonable statistical criterion is a balanced incomplete

block design (abbr. BIB design). This is a result due to

Kiefer (1958, 1975). When b is not a multiple of 7, no
BIB design exists and therefore the existing literature is
not of much help to the experimenter. But if b is a mul-
tiple of 7, the designs do exist. Thus label the treatments

as 1l,2,...,7. For b = 7, one example of BIB design is

B2 4 g5 6 1
2. 5.5 6 T2
3 4 6 7aeat
¥ 5 T

If b= T7t, one can simply take t copies of the above de-
sign. The resulting design consists of only seven distinct

blocks and is therefore said to have the support size 7.

There are BIB designs with different support sizes. For
example if b = 35, the collection of all (1) = 35 possible
blocks of size 3 form a BIB design; and this design has
the support size 35. To the experimenter the implementation
of designs with different support sizes may cost differently.

On the other hand certain mixtures of treatments may be more

preferrable than others. These considerations lead to the
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search for BIB designs with various support sizes. It is
then natural to ask the following question: For v =7,
k=3, b=7Tt, and a given number b¥*, does there exist a
BIB design consisting of b* distinct blocks?

In our setting, we may require that b* satisfies the

obvious inequalities
b* < b and

25 =2 b* = 7.
As we shall see in Section 3, the answer to the above question
is basically yes with a few exceptional cases. The construc-
tion of designs or proof of nonexistence of designs heavily
relied on a method called "trade off", which is introduced

and studied in the next section.

2% The Method of Trade Off.

Let V= (1,2,...,v}. A 2=-element subset of V will be
called a pair and a k-element subset will be called a block
(later we will concentrate on the case k = 3). Let P de-
note the incidence matrix of pairs versus blocks. So P is
a (;) by (;) zero-one matrix. A (;}-dimensional column
vector F with non-negative integer entries is called a
BIB design if

PF = Al

for some positive integer \. An entry in F represents

the multiplicity (frequency) that the corresponding block
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~of its entries are nonnegative. Conversely, any BIB design

appears in the design. ©Such a design is also called a BIB
(v,b,r,k,\)-design, where
r = A(v-1)/(k-1) and b = vr/k.
An integer vector T of the same dimension is called a trade if
PT = O.
The sum of all positive entries in a trade is called its volume.

Let F Dbe a BIB design. For every trade T, the vector F + T

1s another design with the same parameters provided that all

sharing the same parameters with F can be written in the
form F + T for some trade T. In order to search for all
designs with the same parameters as F, it then suffices to
investigate the trades.

Hereafter unless specifically mentioned, we shall re-
strict our attention to only the case k = 3. So a block
now means a triplet. The notation for the triplet consisting
of the elements x, y and 2z will be (xyz), while the order
among the 3 elements is not essential. Similarly, the typical
notation for a pair will be (xy), x ¢ V and y e V.

Let Z ©be the free Z-module generated by all the (Z)
possible pairs and 23 the free Z-module generated by all

the ) possible triplets. The incidence matrix P 1in the

v
\3
above may now be interpreted as the boundary operator

which is the Z-homomorphism defined via

o (xyz) = (xy) + (xz) + (yz).




Under these notations, an element in 25 represents a trade

if and only if it belongs to the kernel of o.

|
|

; Example 1. (125) + (146) + (234) + (356) - (124) - (156)
{ - (235) - (346) represents a trade. When this trade is

‘ added to the design (124) + (137) +(156) + (235) + (267)
+ (346) + (457), we obtain another design (125) + (137)
+ (146) + (234) + (267) + (356) + (457). 1In other words,
from the first design the four blocks (124), (156), (235),
and (346) have been traded for the blocks (125), (146),
(234), and (356) to obtain the second design.

Now we introduce a geometric representation of the
trades. Given a trade T, construct a compact surface
without boundary as follows. First create two collections
of 2-simplexes (triangles) with their vertices labeled by
elements of. V. The 2-simplexes in one collection will be

called the positive triangles and those in the other collec-

tion will be called the negative triangles. For every

term +(xyz). in T, there corresponds a positive triangle
with vertices labeled by x, y, and 2z. If the coefficient

of (xyz) in T is m > 1, then there are m copies of

such a triangle. On the other hand, for every term =(xyz)

in T, there corresponds a negative triangle in the similar
mannef. So every pair (xy) appears on the same number of
triangles in both collections. Thus, there exists a one-to-one
matching between the edges of positive triangles and the edges

of negative triangles so that every matched pair share the




same two labels. When we identify every matched pair of

edges in the natural way, we obtain a compact surface without
boundary. This is because a trade is equivalent to an element
in the kernel of the boundary operator. We emphasize the possi-
ble nonuniqueness of the matching. Different matchings may

lead to different geometricvconfigurations. Also the labels

on the vertices are not necessarily all distinct.

Example 2. The trade in Example 1 is represented by the

diamond-shaped topulougical sphere

Here in'the picture the shaded regions are the negative triangles.
In general, a trade gives rise to a compact surface that is

partitioned into %gsitive triangles and negative triangles with

the following two properties.

(1) Any two positive triangles can not intersect each other
except possibly at their vertices. Neither can any two

negative triangles.

(2) The intersection of a positive triangle with a negative




A

triangle is vaccum, or one vertex, or two vertices, or an
edge.
We shall refer to such a partition of surfaces, with or with-

out boundary, as an Eulerian triangulation, although it is not

quite a triangulation in the usual sense of algebraic topology.

*
The edges of the triangles form an Eulerian graph on the sur-

face, 1.e., a graph such that the valency of every vertex is
an even integer. Also no vertex can have Jjust two valencies,
because then there would be two triangles sharing two common
edges.

The following example of trade 1s also obtained by tri-

angulating a sphere.

This figure represents the trade (134%) + (156) + (178)
+ (238) + (245) + (267) ~ (138) - (145) - (167) - (234) - (256)
- (278). Again the shaded regions are the negative triangles.

¥ A more precise terminology would be Eulerian multigraph than

Eulerian graph according to Harary (1969).
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It is well-known that a compact connected surface is
elther a sphere, or a connected sum of tori, or a connected
sum of projective planes (see, for example, Theorem 5.1 in
Massey (1967)). The standard presentation of the connected

sum of n tori is by identifying edges of a 4n-gon in pairs.
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Similarly for the connected sum of n projective planes we

have the following figure.

an;T//' i
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Using these standard presentation of surfaces, we can

easily construct more trades.

Example 4.

N,
7

Torus

N/

Example 5.

projective

plane

Example 6.

Klein
bottle

Eulerian

) ;
triangulation 4 [

| \1l

1

Eulerian

triangulation

Eulerian
triangulation

b

5.:
ML
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Note that the figures in Examples 4 and 6 represent the

same trade.

Example 7.
> i 1, : 2 ko 1
|- (=TT
N Torus Kulerian H'DI//P)/; JIL/ .- “/) 4
N - 4 = - n> ” W H|H:o II' [
triangulatio //L alll qi,J/
) T I
> ! [
2 % 3 1
Example 8.
Torus
Eulerian S
== - triangulation

Recall that the volume of a trade (as a column vector)

means the total positive entry in the trade. We have the following:

Lemma 1. For a sufficiently large v, there exist trades of

any volume other than 1, 2, 3, and 5.

Proof: In Examples 2, U, 8, and 7, we have seen trades of
volume 4, 6, 7, and 9, respectively. On the other hand,

adding m copies of. a trade of volume 4 to a trade of volume
k based on unrelated symbols yields a trade of volume 4m + K.

This observation together with the above examples proves the

lemma.




We have seen the convenience in constructing trades

from the concept of Eulerian triangulation. In the proof of
Lemma 5 below, we shall also find the same concept powerful
in showing negative results. First we state a couple of self-

evident lemmas.

Lemma 2. For every Eulerian triangulation of a compact sur-

face with boundary, the number of boundary.edges that are on

positive triangles differs from the number of those on nega-

tive triangles by a multiple of 3.

Lemma 3. There exist no trades of volume 1, 2, or 3; therefore

the minimum trade volume is 4.

Lemma 4. If a disc is Eulerian triangulated with exactly 2

boundary edges, then

(1) exactly one boundary edge is on a positive triangle

and the other is on a negative triangle, and

(1) there are at least 4 positive and 4 negative

triangles.

Proof: Statement (i) follows directly from Lemma 2. From
this, we know the Eulerian triangulation represents a trade,
even though the surface has a boundary. The second statement

.

now follows from Lemma 3.

Lemma 5. There exist no trades of volume 5.




Proof: Assuming there exists an Eulerian triangulation of

certain compact surface without boundary by exactly 5 positive
and 5 negative triangles, we want to derive a contradiction.
First, we know that the triangulation on every connected
component of the surface represents a trade. So the surface
must be connected by Lemma 3. There are 10 triangles in total,
so there are 15 edges. Let n be the number of vertices.

The Euler characteristic of this surface is

X =n =15 + 10
=n—5
<E.

The inequality has been due to the connectedness. We label the

vertices by 1,2,...,n, respectively. There are three cases to

examine.
Case 1. X = 2. Then n =7 and the surface is a topological
sphere. The edges in the triangulation form a planar graph and
its valency sequence is

(6 0 o8, B By g By ).

With a suitable relabeling, the neighborhood around the ver-

tex is as in either graph below.
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In the first graph, the six arrows are supposed to be linked
in pairs to form a planar graph, but this is obviously im-
possible. After identifying the two points labeled as 2,
the second graph lead to the following configuration.

Again the arrows can not be linked in pairs to form a planar
graph.
Case 2. %X =1. Then n =6 and the surface is a projective
plane. The valency sequence has to be one of the following
three:
(6, Gy 6, By Iy &)

or (8, &, 4, 4, 4, 1)

or (10, %, 4, 4, 4, 4),
Since in any case some vertex has at least 6 valencies, we
may assume that there are two edges o and B Joining be-
tween vertices 1 and 2. These two edges form a cycle. Since
the fundamental group of a projective plane is Z/2Z, this

cycle is either trivial or is the generator of the fundamental

group.
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First we assume that the cycle generates the fundamental
group. Then the projective plane can be drawn as a square

with edges identified in pairs as in below.

So we have an Eulerian triangulation of the square disc based

on the following picture. 1

Here w, x, ¥, z € (3,4,5,6) and w#+ x, wtz, x4y, y ¢ z.
Also from Lemma 4, we have w4y and x % z. So w, X, ¥,
and 2z are all distinct. By symmetry, let w = 3, x = 4,
y=5, and z = 6. Observe that vertex 1 must have more than
6 valencies and vertex 2 has at least 6. Therefore the

valency sequence is
(8, 6, 4, 4, 4, 4),

and the arrows in the following graph should be linked in pairs
to form the triangulation.




: 14,

z 2

\
¢

{
BRut "~ is obviously impossible.
.sume that o and B form a trivial cycle. i
The ~y:. - .. . cuts the projective plane into two parts: a

disc and a Mobius band. From Lemma 4 the Eulerian triangu-
lation on the disc part takes at least 4 positive and 4 nega-
tive triangles. So the MObius band is Eulerian triangulated
by at most 1 positive and 1 negative triangles. This is a

contradiction.

Case 3. X =0. Then n =5, We need to show the nonexistence

of a trade T of volume 5 on 5 or less symbols. First we

may assume that T 1is of the form

where x = 4 or 5. Then the coefficient of the block (145)
in T must be at least 2. Thus

T = (123) + 2(145) - (124) - (134) - (23x)
- (1y5) = (1z5) = (ud5) - (v45) + - ...
But this implies that T has volume at least 7, a contra-

diction.

We conclude the above results in the following theorem

for later application.
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THEOREM 1. For any integer 1, there exists a trade of

volume i if and only if 141, 2, 3, or 5.

Remark: It is natural to generalize the concept of Eulerian

triangulation for higher dimensional manifolds. Then a t-
dimensional Eulerian triangulation represents a trade on the
so-called t-designs with k = t + 1. BIB designs are t-designs
when t = 2. Since only the 2-dimensional compact manifolds
héve been completely classified, the analysis of higher di-
mensional Eulerian triangulations may be difficult.

3. An Application of the Method of Trade Off: BIB designs

with v=7 and k = 3.

All the designs in this section refer to
BIB(7,b,r,3,\)~-designs based on the set of symbols
(1,2,3,4,5,6,7§. From the relations rv = bk
and A(v-1) = r(k-1), one can see that b must be a multiple
of 7. Also, we have r = 3b/7 and X\ = b/7. Thus there
are b blocks in the design; every symbol appears in exactly
r of them and every pair occurs in exactly A of them. We
want to determine the existence or nonexistence of designs
with any given b and b* (the support size). The results

are summarized in Table 1.




Table 1.
Existence and nonexistence of H.W.Hm_w_:.d.w.u.:uammwma with
support size b*. The symbol X indicates nonexistence.
A blank space means existence.

b*16 or .
less 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
7 X \\\ -~ Nonexistence (because b* is never greater than b) \\\ \\ P
B S R AP S e
14 X X X X X ot e ot R \ ol i o
21 X X X X % : & e o
m J \.4 r 4
28 X R X 5 X _ s :
35 X X X X X 5 ! e ¥z X
o
42 X b T % @ i X
A
49 or| X X X X X &
more =)
()
2
n
o
=
=
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From Table 1 the only unknown case is when b* = 16.
In all other cases we shall either exhibit examples of de-
signs with prescribed b and b* or prove their nonexist-

ence.

First, in order to cover all the (Z) = 21 possible
pairs, at least 7 distinct blocks are needed in a design.
This means that b* > 7. In particular, it is known that
every design with b = b*¥ = 7 1is isomorphic to a finite
projective plane of order 2.

Theorem 3.2 in van Lint and Ryser (1972) shows b* can
never be 8. Pesotchinsky (1977) showed b* 4 9, 10, 12.

When b = 35, there are no designs based on exactly 30,
32, 33, or 34 distinct blocks. Because if there existed
such a design, its difference from the complete design would

be a trade of volume 5, 3, 2, or 1, contradicting Theorem

1l in the last section.
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Next we treat the case when (b,b*) = (28,27) or (42,34).

We need the following lemma.

be blocks. If F+ (123) - By=B, - ... - By 1is a trade,
then B, = (123) for some 1i.

Proof: Assuming that B, + (123) for all i, we shall derive
a contradiction. The blocks Bys Byy...,Bg cover all the

21 possible pairs; the three pairs (12), (13) and (23) are
doubly covered, while all other pairs are singly covered,

By symmetry, we may assume that B; = (12u), B, = (12v),

By = (13w), B, = (13x), By = (23y), and By = (23z). But the
above covering properties of the eight blocks imply that

U, Vv, W, X, ¥, 2 are distinct elements of the l4-element set

(4,5,6,74. This is a contradiction.

Proposition 1. (b,b*) 4 (28,27).

Proof: Suppose there exists a design F with b = 28 and
b¥ = 27. We may assume, by symmetry, that the unique doubled
block in the design is (123). Let the 8 blocks that are
missing from the design be qenoted as Bl’ Bz""’BS' Thus
By 4+ (123) for all 1. Adding any design with 7 blocks to
F minus the complete design, we obtain a trade that is pro-

hibited by the above lemma. This contradiction originates from

the assumption of the existence of the design F.
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Proposition 2. (b,b¥*) 4 (42,34).

Proof: Suppose there exists a design with b = 42 and

b* = 34, By symmetry, we assume that this design is equal to
the complete design - (123) + B, + B, +...+ Bg.,

where B,, B,,...,Bg are blocks not equal to (123). The

proof now proceeds in the same way as in the proof of Proposi-

tion 1.

As a contrast against Lemma 6, we have the following:
Example 9: Let S denote the sum

(124) + (126) + (127) + (134) + (135) + (137) + (156)
+ (234) + (235) + (236) + (257) + (367) + (456) + (457)
+ (467) - (123). 1If F is any design with 14 blocks, then
F -8 1is a trade. In fact, up to isomorphism, S is unique
subject to this property. On the other hand, the complete
design plus S 1is a design with b = 49 and b¥* = 34,

In Table 2 through Table 6, we provide examples of de-
signs with various b and b*. In these tables each column

specifies a BIB design. Each entry indicates the number of

copies of the corresponding block in the design.
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Table 6
BIB Designs With v =7, k= 3, b
and Support Sizes 30, 32, 33
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With the designs in these tables and the one constructed
at the end of Example 9, we need only to observe the following

fact in order to establish all the existences claimed in Table 1.

Proposition 3. If there exists a design with b blocks

which contains a design with 7 blocks, then there exists

a design with b + 7 Dblocks and the same support size.

We now explain by an example the way the designs in the

above tables were obtained through the method of trade off.

Example 10. Let F denote the design

(127) + (134) + (156) + (235) + (246) + (367) + (457) and

T the trade (127) + (156) + (236) + (357) - (126) - (157)

- (237) - (356). Then the complete design plus F minus T
is a design with 42 blocks. Since only the two blocks (236)
and (357) are missing from this design, the support size is
33, This is the design shown on the last column in Table 6.

Open Question: Does there exist any design with the support

size b* = 16 (while b can be any number)?

The authors conjecture the negative answer to this ques-
tion. The conjecture is based on the following, hopefully
plausible, argument. If there exist any designs with b* = 16,
then very likely there exist such designs with b = 21.

It can be shown that a design with (b,b*) = (21,16) can not
contain a sub BIB design based on 7 blocks. However

computer search suggests that any design with b* < 21 should
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contain a sub BIB design based on 7 Dblocks.

So the exist-

ence of designs with b* = 16 is doubtful. Incidentally,

whether the computer search has suggested a fact is another

open question.
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